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We report measurements of the diffusion coefficient of a dilute quasi-two-dimensional hard sphere col-
loidal suspension using two independent experimental techniques: evanescent wave dynamic light
scattering (EWDLS) and digital video microscopy (DVM). The system studied consists of 1 um sterical-
ly stabilized, uncharged, poly(methylmethacrylate) spheres in a very thin cell (~3 pum). In principle,
EWDSL and DVM yield identical information about the system, albeit by different analyses. When both
methods are used to study the same system it is possible to directly compare measurements of preaver-
aged statistical dynamical quantities with their microscopic counterparts. Our EWDLS measurements
yield the effective diffusion coefficient as a function of wave number and the mean square particle dis-
placement, for fixed wave number, as a function of time. The DVM measurements generate particle tra-
jectories; Fourier decomposition of the trajectories yields the dynamic scattering function, which is
found to be in quantitative agreement with the same function measured by EWDLS. Analysis of the ob-
served intermediate scattering function indicates that, as predicted by Cichocki and Felderhof [J. Phys.
Condens. Matter 6, 7287 (1994)], in this quasi-two-dimensional system the time dependence of the evolu-
tion of the effective diffusion coefficient from its short time value to its long time value has the form
(Int)/t. To our knowledge, these results are the first experimental verification of the predicted temporal

FEBRUARY 1996

evolution of the diffusion coefficient for Brownian motion in a quasi-two-dimensional liquid.

PACS number(s): 61.20.—p

I. INTRODUCTION

The discovery of the very slow temporal decay of the
velocity autocorrelation function of a fluid, by Alder,
Gass, and Wainwright, fundamentally altered our under-
standing of the relationship between the contributions of
local motion and collective motion to diffusion [1]. Stud-
ies of the asymptotic (f— o) time dependence of the
Green-Kubo integrands have established that so called
long time tails are characteristic of all of the autocorrela-
tion functions whose integrals define transport
coefficients in a fluid. Moreover, the importance of the
long time tail for a particular transport coefficient de-
pends on the dimensionality of the system, and it has
been known for more than 20 years that transport phe-
nomena in a two-dimensional fluid are different from
their three-dimensional counterparts.

The development of an improved theoretical under-
standing of transport phenomena in pure fluids has been
paralleled by theoretical studies of Brownian motion in
systems where the excluded volume and hydrodynamic
interactions between a Brownian particle and the solvent
and between Brownian particles cannot be neglected. As
for the case of pure fluids, the time dependence of the
effective diffusion coefficient of a Brownian particle is
predicted to be different in two and three dimensions. It
is found that the initial motion of an isolated Brownian
particle induces a hydrodynamic flow field in the host
liquid which recirculates around the particle and exerts a
very slowly decaying force on it. In three dimensions the
velocity autocorrelation function of an isolated Brownian
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particle has a long time tail which decays as ¢ /2, hence
its diffusion coefficient is well defined in the limit ¢t — .
In two dimensions the velocity autocorrelation function
of an isolated Brownian particle has a long time tail
which decays as t 7! hence its diffusion coefficient is
undefined in the limit as # — o. These results are conse-
quences of the structures of the Liouville operators which
determine the dynamical evolution of the three- and
two-dimensional systems.

There has also been considerable development of a lim-
iting version of the theory of Brownian motion for a time
scale on which the hydrodynamic interactions can be
treated as instantaneous. In this limit the divergent
behavior of the two-dimensional diffusion coefficient is
absent and the evolution of the system can be described
by a generalized Smoluchowski equation. We shall refer
to this model system as a Smoluchowski liquid. The
diffusion coefficient in a Smoluchowski liquid has in-
teresting properties. The value of the zero wave vector
diffusion coefficient is time dependent by virtue of the
difference between the two (Brownian) particle equilibri-
um distribution function and the two particle distribution
function modified by the presence of a steady state flow.
In the short time limit that diffusion coefficient is deter-
mined by an integral of hydrodynamic interaction func-
tions weighted by the equilibrium two particle distribu-
tion function [2]. In the long time limit the value of that
diffusion coefficient is determined by an integral of hydro-
dynamic interaction functions weighted by the radial part
of the solution to the two particle Smoluchowski equa-
tion [3]. In a two-dimensional Smoluchowski liquid the
asymptotic value for the diffusion coefficient of the
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Brownian particle is reached very slowly. Indeed,
Cichocki and Felderhof [4] predict that in a two-
dimensional Smoluchowski liquid the temporal evolution
of the diffusion coefficient from its short time value to its
long time value has the form (In?) /z.

From a fundamental point of view, a Smoluchowski
evolution operator cannot be used to describe diffusion
dynamics in a two-dimensional suspension of Brownian
particles because that operator implies that the hydro-
dynamic interactions in the system are instantaneous,
hence the retardation effects associated with the long
time tail of the velocity autocorrelation function are ab-
sent and the diffusion coefficient is finite. As mentioned
at the beginning of this section, in a two-dimensional sus-
pension whose dynamics are described by the Liouville
operator the hydrodynamic motion of the host liquid in-
duced by the Brownian particle leads to divergence of its
diffusion coefficient. However, the use of the Smolu-
chowski evolution operator is appropriate, hence also the
Cichocki-Felderhof analysis, for the description of a
quasi-two-dimensional suspension of Brownian particles
which we define with the following conditions. First, the
vortex motion that generates the long time tail in the ve-
locity autocorrelation function must be quenched.
Second, the scale length for decay of in-plane momentum
transfer correlations must greatly exceed that for out-of-
plane momentum transfer correlations. Third, the range
of the in-plane positional correlations must greatly
exceed the range of the out-of-plane positional correla-
tions. Fourth, the Brownian particle displacements
transverse to the plane must be negligibly small.

An experimental realization of a strictly two-
dimensional colloid suspension does not exist. It is possi-
ble, however, to design a system with characteristics that
approach quasi-two-dimensional behavior as defined
above. In this paper we describe the results of two in-
dependent measurements of diffusion in a dilute quasi-
two-dimensional colloidal suspension consisting of steri-
cally stabilized poly(methylmethacrylate) (PMMA)
spheres in a cell whose thickness is only of order three
times the particle diameter. Since the PMMA particles
are uncharged the system can be accurately modeled as
an assembly of hard spheres undergoing Brownian
motion. In one sense the system we have studied has
three-dimensional character. That is, both the ratio of
the diameters of the Brownian particle and a solvent mol-
ecule (~500) and the space between a Brownian particle
and the wall (~500 solvent molecule diameters) are
sufficiently large that the flow of host liquid around a
Brownian particle must be described as three dimension-
al. Therefore one cannot expect a suspension of the type
we have studied to exhibit divergence of the Brownian
particle diffusion coefficient. However, the system we
have studied does approximate a quasi-two-dimensional
suspension of Brownian particles since the walls of the
cell impose boundary conditions on the flow of the host
liquid induced by the motions of the Brownian particles
which make the decay length for out-of-plane momentum
transfer very small compared to the decay length for in-
plane momentum transfer. We believe that the walls of
our cell, which are coated with an alkane brush, prevent
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the propagation of vortices that are generated by motion
of a Brownian particle and thereby quench the long time
tail of the velocity autocorrelation function. We note
that the boundary conditions also increase the frictional
force that impedes the in-plane Brownian motion, hence
decease the diffusion coefficient of an isolated Brownian
particle. Finally, the motions of the centers of the
Brownian particles are observed to be in plane to within a
small fraction of a particle diameter, hence the excluded
volume interaction of the particles is entirely in the plane
of the particle centers. '

The two experimental methods we have used are
evanescent wave dynamic light scattering (EWDLS) and
digital video microscopy (DVM). Our EWDLS measure-
ments yield the effective diffusion coefficient as a function
of wave number and the mean square particle displace-
ment, for fixed wave number, as a function of time. The
DVM measurements generate particle trajectories;
Fourier decomposition of the trajectories yields the dy-
namic scattering function, which is found to be in quanti-
tative agreement with the same function measured by
EWDLS. Analysis of the observed intermediate scatter-
ing function indicates that, as predicted by Cichocki and
Felderhof, in this quasi-two-dimensional system the time
dependence of the evolution of the effective diffusion
coefficient from the free Brownian particle value to the
interaction dressed value has the form (Int)/t. To our
knowledge our results are the first experimental
verification of the predicted temporal evolution of the
diffusion coefficient for Brownian motion in a quasi-two-
dimensional liquid.

II. THE MODEL SYSTEM

The system we have studied consists of 1 um diameter
spherical PMMA particles in a very thin cell (~3 pm).
The surface of each PMMA particle was covered with a
~20 A oligomeric brush of poly(3-hydroxystearate) that
acts to sterically stabilize it with respect to aggregation
induced by van der Walls forces. The PMMA particles
were suspended in an aqueous sucrose solution (10% by
weight) that is confined between the walls of a thin glass
cell. The cell walls were coated with trihydroxyoctade-
cylsilane, which acts to prevent adsorption of PMMA
particles to the wall. The spacing between the cell walls
could be varied and, for the experiments reported, was set
to approximately three particle diameters. We deter-
mined, by direct microscopic examination, that this thin
cell configuration constrained the PMMA particle
centers to a plane within a small fraction of a particle di-
ameter.

Monodisperse 1 um PMMA spheres, synthesized ac-
cording to the method of Ottewill and co-workers [5],
were obtained from the Seradyne Corporation. The par-
ticles were washed free of any surfactant impurities by re-
peated sedimentation followed by resuspension in purified
water (Nanopure system, 18 MW, with a 0.2 um filter).
The particles were then resuspended in 10% (by weight)
aqueous sucrose solution (Fisher Scientific).

A schematic diagram of the thin cell used in both ex-
periments is shown in Fig. 1. Cells were constructed
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FIG. 1. Schematic of experimental cell for thin colloidal sus-
pensions. (A) Top view. (B) Side view. One glass microscope
slide, one glass cover slip, and two bent pieces of glass tubing
are joined together with epoxy to form airtight seals. The shad-
ed area represents the region between the cover slip and the mi-
croscope slide that is filled with epoxy. The cell is charged with
sample through the tubing. The tubing is made part of a closed
manifold system which may be pumped out to adjust the sample
out-of-plane dimension.

from glass microscope slides, No. 1 microscope cover
slips (0.18 mm thickness), and glass tubing (outer diame-
ter equal to 4 mm). Two + in. holes separated by 2 in.
were drilled through the microscope slides. All glass sur-
faces were then treated with an octadecylsilicone coating
(Glassclad 18, United Chemical Products). The glass tub-
ing was sealed to the slides using a nonleaching epoxy
that wets glass well (Epo-tek 302 3M, Epoxy Technolo-
gies, Inc.). Before its application, the epoxy was degassed
in a vacuum dessicator. All parts were oven baked
(T =85°C) overnight to assist in the curing process. The
cover slips were glued to the opposite slide surface using
an epoxy that cures when exposed to ultraviolet light
(Norland UV epoxy, Norland Productions, Inc.). The
gluing was accomplished by drawing a thin line of the
epoxy along the inside edge of the cover slip, then lower-
ing the glass slide onto the cover slip. Immediately after
contact was made between the surfaces, the glue was
cured by exposure to a 100 W UV lamp source. The cells
were allowed to further cure at an elevated temperature
overnight (7 =85 C).

The finished cells were charged with sample in a
sequential manner. First, purified water was introduced,
followed by 10% sucrose solution, and finally the PMMA
suspension. The glass tubing was attached to a manifold
system constructed from tygon tubing and a Nalgane
vacuum hand pump (Fisher Scientific). By the applica-
tion of a slight vacuum, it is possible to adjust the inner
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wall spacing between the slide and coverslip. It was
found that wall spacings between 10 and 3 yum (measured
by microscopy) were easily achieved.

Samples were observed under the microscope to deter-
mine if a quasi-two-dimensional suspension was formed,
the criteria being that the particle centers lie in a plane
and that motion out of the plane is suppressed. Such
samples could usually be made when the wall spacing was
reduced to 3 pm. Light scattering and microscopy mea-
surements were made on the same sample.

For the EWDLS experiments, the scattered light inten-
sity was detected using a single-mode optical fiber with a
grin lens mounted on both ends (Fujikura, Japan). The
detection end was mounted on a rotation stage able to ro-
tate around the axis of the cell with an in-plane precision
+0.5". The distance between the lens and the illumina-
tion area was approximately 50 cm with an out-of-plane
angle ¥'"'=5". The illumination area was visible to the
fiber through a 2 mm circular pinhole in a mask placed
flush over the outer cell surface. The mask considerably
decreases the detection of stray light arising from multi-
ple reflections in the cell. The detection of stray light was
further decreased by the small acceptance angle of the
optical fiber (<0.5). The transmitting end of the fiber
was joined to a photomultiplier tube. The temporal in-
tensity autocorrelation function was obtained using a di-
gital correlator (BIAT9000, Brookhaven Instruments).
The excitation source was a 100 mW Coherent argon ion
laser; its output power was typically set to 30 mW.

The DVM measurements were made using an Olympus
BH2 metallurgical microscope with a 100X, numerical
aperture 1.2, oil immersion objective. The objective’s
depth of focus is a fraction of the PMMA sphere diame-
ter, so that nonplanar particle configurations were easily
detected. Images of the suspension were captured by a
Hitachi charge coupled device (CCD) video camera
mounted to the camera eyepiece. The frame speed of the
CCD was 30 Hz, while its shutter speed was 5 of a
second. The analog camera output was sent directly to
the video port of a Silicon Graphics Indy (SGI) worksta-
tion. The SGI frame grabber supplied with the worksta-
tion was used to digitize sequences of 320X240 square
pixel frames. A typical run consisted of 100 frames in se-
quence, corresponding to roughly 25 Mbytes of data. All
image processing procedures were implemented using IDL
(Research Systems, Inc.), a programming language opti-
mized for visual data analysis. The pixel length was cali-
brated by imaging a transmission electron microscope
(TEM) grid of known scale. The aspect ratio was deter-
mined to be 1+0.1 and the calibrated pixel dimension
was 1 pixel=0.174£0.0015 pm.

III. BACKGROUND INFORMATION

In order to discuss the qualitative behavior of the
transport properties of a coloidal suspension, it is neces-
sary to define some characteristic time constants. As de-
scribed by Tokuyama and Oppenheim [6], there are five
pertinent characteristic times associated with any hard
sphere suspension: the relaxation time of the velocity au-
tocorrelation function of the solvent molecules, #,; the
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momentum relaxation time of fluid displaced by a
particle’s volume, 7,; the relaxation time of the velocity
autocorrelation function of the Brownian particle, 75; the
time after which hydrodynamic effects become impor-
tant, 75; and the structural relaxation time 7, during
which particles diffuse a hydrodynamic screening length
I. In the case of dilute colloidal suspensions, where the
Brownian particle mass density is not very different from
the fluid mass density, the relative time scales can be ar-
ranged as follows: #,(ps) <<7,(ns)~7p(ns) <<7y(ms)
<< Tp(s).

A theoretical prediction of the time-dependent effective
self-diffusion coefficient for a two-dimensional Smolu-
chowski suspension of Brownian disks, D¢(#), has been
worked out by Cichocki and Felderhof [4]. When ¢ is
large relative to 7, the mean square displacement of a
given particle increases linearly with time. This asymp-
totic behavior defines the long time self-diffusion constant
D&, The value of D¢ depends on steady state hydro-
dynamic conditions such as interparticle and particle-
wall interactions as well as the particle concentration.
These boundary conditions also determine the functional
form of the evolution of Dg(¢) from its initial value, D3,
to DL, It is a consequence of the two-dimensional bound-
ary condition that Dg(¢) tends to DZ very slowly. This
evolution is detectable at intermediate times 75 <t <7p
and, accounting for particle interactions, is predicted to
have the peculiar behavior Dg(¢)~ 4 + B (Int)/t, where
A and B are constants. We review the basis for this pre-
diction later in this section.

As mentioned in Sec. I, we have employed two in-
dependent, yet complementary, methods to study quasi-
two-dimensional Brownian motion. The first, evanescent
wave dynamic light scattering is a direct measurement of
the time autocorrelation function of intensity fluctuations
of in-plane scattered light [7-9]. The scattering excita-
tion source is an evanescent wave that propagates parallel
to and within the sample plane. This evanescent wave is
produced by the tctal internal reflection of a mono-
chromatic beam that is directed from within the glass
wall of the experimental cell toward its dielectric inter-
face with the colloid suspension. The amplitude of the
evanescent wave decays exponentially with distance from
the interface with a decay constant on the order of the
excitation wavelength (d, ~A.). Thus, in applying the
EWDLS geometry to the thin cell configuration de-
scribed above, the time correlation of the scattered light
intensity is directly related to the collective in-plane
motions of the colloid particles. An important aspect of
this measurement is that it is sensitive to the motions of
macroscopic numbers of particles and, for this reason, is
representative of an ensemble averaged dynamical quanti-
ty [10]. The experimental observable is therefore simply
related to the two-dimensional dynamic scattering func-
tion. Recently, EWDLS has been successfully applied to
the measurement of diffusion of disklike diblock copoly-
mer aggregates adsorbed at the air-water interface [8,9].

The second method we have used is digital video mi-
croscopy [11-14]. Unlike EWDLS, a combination of
DVM, sophisticated image processing, and computer
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tracking algorithms can be used to obtain individual par-
ticle coordinates as an explicit function of time. The
methodology for performing all three tasks with opti-
mized precision is still evolving [15]. In principle, it is a
straightforward, though numerically taxing, application
of statistical mechanics to calculate the ensemble aver-
aged two-dimensional dynamic scattering function from
the N particle trajectories.

The DVM data provide a direct representation of the
two-dimensional Brownian particle dynamics, while the
light scattering measurements lead to time correlation
functions that already contain preaveraged microscopic
dynamical information. By examining the consistency
between these results, it is possible to test the validity of
either method over the range of temporal and spatial pa-
rameters that the two have in common.

To provide the reader with an understanding of the
predicted temporal evolution of the diffusion coefficient
for two-dimensional Brownian motion in a Smoluchowski
liquid we briefly review the work of Cichocki and Fel-
derhof [4]. They consider a system of N identical circular
disks undergoing Brownian motion in a plane. The parti-
cles have radii a and are confined to an area X by a wall
potential. The “free particle” diffusion coefficient is
given by the constant D,. The motion of a labeled parti-
cle is affected by particle-particle interactions. The
configuration of the system is specified by the 2N-
dimensional vector X=(R;y,...,Ry), where the com-
ponents of the vector R; are the Cartesian coordinates of
the ith disk. The time dependence of X is characterized
by the solution to the generalized Smoluchowski equa-
tion, P (X,t), which is the conditional probability that the
system will adopt the configuration X at time ¢ given the
initial condition [10]. In the long time limit P(X,?) ap-
proaches the Boltzmann  distribution, P (X)
=exp[ —BP(X)][Z(B)]!, where B=(kpT)"!, ®(X)
contains both wall and particle interactions, and Z (f3) is
the canonical partition function. The solution is taken in
the thermodynamic limit (N — 0,2 — o0, p=N/Z) [10].

The self-diffusion coefficient is defined in terms of the
mean square displacement of a labeled particle,
W (t)=([R,(t)—R,(0)]?) /4, and can be written as

Dy(t)=DE+pug(t), (3.1)

where the relaxation function pug(t) is related to the
memory function M(¢) through

ps()=— [ “Mg(t"dt" .

t

(3.2)

The memory function is defined as the ensemble averaged
autocorrelation of the fluctuating force experienced by
the particles [10]. For the treatment given by Cichocki
and Felderhof [4], the evolution of M¢(?) is due complete-
ly to particle-particle collisions. The relaxation function
describes the evolution of the diffusion coefficient to its
asymptotic limit D&  For two-dimensional Smolu-
chowski systems pg(t) is expected to decay on a time
scale comparable to 7.

Since the self-diffusion coefficient is related to the mean
square displacement through Dg(#)=dW (t)/dt, Eq. (3.1)
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can be integrated to obtain

W(t)=D§‘t+f0tus(t')dt’ . (3.3)
By solving the Smoluchowski equation for two interact-
ing hard disks, Ackerson and Fleishman have shown that
for a semidilute two-dimensional system of Brownian
particles ug(¢) decays as 1/¢ in the time range 754 <t <7p
[16]. This result was used by Cichocki and Felderhof to
obtain [4]

W(t)=Dkt +(D§—DE)r In(t/1p)+0(1),  (3.4)

where 7; and T, are, respectively, “long” and “medium”
scale time constants. It is apparent from Eq. (3.4) that
the logarithmic correction to the diffusive behavior of the
mean square displacement can only be important during
times of order 7, and for (D§— DY) significantly greater
than zero.

The logarithmic term in Eq. (3.4) can be detected ex-
perimentally if one considers an effective self-diffusion
coefficient defined by the ratio Dg(¢)=W(t)/t. Making
use of this definition and Eq. (3.4),

In(t /73

Dg(t)=DE+(D§—D&)r, +o(1). (3.5)

Equation (3.5) describes the long time asymptotic
behavior of the diffusion coefficient. The (Inz) /¢ function-
al form is predicted to be independent of particle interac-
tions, at least for the case of short range interactions, and
is a signature of the solution to the two-dimensional Smo-
luchowski equation with direct particle-particle interac-
tions.

IV. EXPERIMENTAL OBSERVABLES
AND DYNAMIC QUANTITIES

The EWDLS method has been previously described in
detail by Lin and Rice [8], while the DVM methodologies
are reviewed in an article by Crocker and Gier [15]. Nev-
ertheless, there are important distinctions between the
previously studied experimental systems and the one we
have studied. For this reason, it is necessary to discuss
some of the details of our applications of these methods
in order to place them into a proper context.

A. Dynamic light scattering

In EWDLS measurements, the experimental observ-
able is the time correlation function (the intermediate
scattering function) that reflects the growth and decay of
fluctuations in a spatial Fourier component of the refrac-
tive index with wavelength 27Q ~1, where Q (defined
below) is the scattering wave vector. Roughly speaking,
the decay time associated with a particular value of Q is
given by 7,=[D,Q?%]"!, which is the time required for a
noninteracting particle to diffuse the distance Q ~'. The
range of Q probed is significant when compared to the
mean separation between the particles, L =p /2. The
hydrodynamic regime corresponds to small-Q measure-
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ments (Q !>>L) that probe collective large scale
motions occurring on the relatively long time scale
(ro~7p). Large-Q measurements probe small scale,
short time motions of individual particles (Q ~! << L and
70<<7p). The latter is referred to as the microscopic re-
gime. For the semidilute systems examined in this work,
the area fraction p=pma*=0.01, L =8.5 um and 0.07
pm = Q0 !<0.2 um, so that our EWDLS measurements
probe the microscopic dynamics of individual particles.

We show in Fig. 2 a schematic representation of the
EWDLS experimental geometry we have used. The con-
tinuous wave emission of an argon ion laser (A, =5145
A) is used as the radiation source. The beam propagates
within the x-z plane and is incident on a hemispherical
glass lens upon which rests the experimental cell. The
angle of incidence 6, is set to a value larger than the criti-
cal angle for total internal reflection [which depends on
the relative refractive index at the dielectric interface,
6.=arcsin(n,), where n,=n,/n; and n,<n;]. Index
matching fluid (n,=1.52) is used to join the glass sur-
faces between the cell and lens. Total internal reflection
occurs at the interface between the colloid suspension
and the inner cell wall. Since the latter surface is coated
with an 18 carbon amphiphile, the value of n, is taken as
an average between that of 10% sucrose solution
(n =1.38) and octadecane (n =1.44) such that n,~1.41
and 6,~68. The spatial dependence of the evanescent
wave contained in the x-z plane is given by [8]

Egw <exp( —iQpwx —d,z) , 4.1)
where
- 27rn sind; 42)
}"ex
and the penetration depth is
d,= Ao 4.3)

P 2mn (sin®0,—n2)'"?

i
n=1.52~

[ ]
n=1.44"
n=138 v
n=1.44~y Eew —1—

[ 1
n=1.52""

FIG. 2. Schematic representation of the EWDLS geometry.
The excitation laser beam (A.,=5145 A) is directed through a
hemispherical glass lens towards the sample cell surface at the
angle 8, =68. The evanescent wave Egy propagates parallel to
the sample plane in the same direction incidence. The shaded
areas represent the 18 carbon coating on the inner glass sur-
faces. The refractive index n of each surface is shown. The
out-of-plane detector position is defined by the angle ¢'"’. This
determines the out-of-plane scattering angle .
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Substitution of the above values and 6,=70 into Egs.
(4.2) and (4.3) leads to Qpw=1.74X10° cm~! and
d,=0.36 pm. Although the particles are located in a
plane parallel and approximately 1.5 pm above the x-y
plane, the magnitude of the evanescent wave field [ ~6%
as given by Eq. (4.1)] is still large enough to generate
measurable scattering.

The incident evanescent wave propagates along the x
direction and scatters from the particles suspended in the
fluid. The subsequent change in photon momentum in
the x-y plane results in an azimuthal- and polar-angle-
dependent in-plane scattering wave vector given by [8]

Q., =(1—2cosy cos¢p+cos’y)! (4.4)

where ¢ is the azimuthal (in-plane) scattering angle and ¢
is the polar (out-of-plane) angle. In order to reach the
detector, the scattered evanescent wave must pass
through the top portion of the cell. As the scattered light
passes through this interface, subsequent refraction leads
to a larger value of ¢. If the coating on the glass wall is
accounted for, there are three dielectric interfaces that
the scattered light must pass through; suspension to coat-
ing, coating to glass, and glass to air. A simple applica-
tion of Snell’s law can be used to perform the three stage
transformation from 3 to ¢’ (see Fig. 2). One finds
n''siny’"’ }
n

Y =arcsin 4.5)

In Eq. (4.5), ¢'""' is the polar angle of the scattered evanes-
cent wave after it has passed through the final interface
before it reaches the detector, n'’’ is the refractive index
of air (n'"=1.0), and n is the refractive index of the
sucrose solution. Typically, the value of ¥’ is fixed by
the out-of-plane placement of the detector while measure-
ments are made for various values of the in-plane angle ¢.
The ¢ component of Q,, is assumed to be unaffected by
refraction through the cell. Therefore Egs. (4.4) and (4.5)
can be used to calculate Q,, for a particular detector po-
sition. Table I lists values of ¢ and Q,, used in the exper-
iments presented here based on the value 3'''=85.0,
leading to ¥=46.2".

We make the standard assumptions used in dynamic
light scattering; the scattering volume contains a large
number of particles so that the amplitude of the scattered
electric field is a Gaussian random variable; the back-

TABLE 1. In-plane scattering wave numbers Q,, for
EWDLS measurements. ¢ is the in-plane scattering angle, Q,,
is given by Eq. (4.4), and ro=[D0Q3y 17! is the approximate de-
cay time of the self intermediate scattering function Fg(Q,1).
(Dy=2.32X10"° cm?s™ )

¢ (degrees) Q,, (em™}) 0.," (um) 7o (ms)
5 54 551 0.1833 145
30 91128 0.1097 51.9
45 123076 0.0813 28.5
55 144026 0.0694 20.8
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ground scattering is negligible compared to that due to
the particles; and the suspension is sufficiently transpar-
ent that multiple scattering events are unimportant. Pro-
vided that these are accurate assertions, the time-
dependent intensity autocorrelation function g®Xr) as
seen by the detector is given by [17]

g2(Q,0=(n {1+ F(A[gV(Q, DT} ,

where (n)? is the average number of photons counted
during the experimental sampling time interval, f(A4)isa
spatial coherence factor that depends on the time aver-
aged number of coherence areas visible, and g‘(Q,?) is
the electric field temporal autocorrelation function [10]

(E(Q,0)E*(Q,1))
(JEQ)*)

In Eqgs. (4.6) and (4.7), Q is the in-plane scattering wave
vector defined by Eq. (4.4) where the xy subscript has
been omitted for clarity. For the remainder of this paper
Q will refer to the in-plane component of the scattering
wave vector.

Equation (4.6) describes the experimentally detected
observable which is easily inverted to obtain g‘(Q, ).
g'"(Q,1) is related to the intermediate scattering function
through

(4.6)

gMQ,n= 4.7)

_F(Q,0)
5(Q)

Comparison between Egs. (4.7) and (4.8) shows that the
static structure factor S(Q) is the time averaged scatter-
ing intensity for a particular wave number, while the in-
termediate scattering function F(Q,t) is the temporal au-
tocorrelation function of the scattered field amplitude
without normalization. The intermediate scattering func-
tion can be written as an explicit function of particle posi-
tions,

g(Q,1 (4.8)

F(Q,0)=N"'3 3 (exp{iQ[R,(0)—R;(1]}), (4.9)
ioj

where the zero time limit of Eq. (4.9) is defined as the
static structure function

S(Q)Ztlin(l)F(Q,t)=N_12 E(exp[iQ'(Ri—Rj)D ,
= il

(4.10)

which serves to normalize the temporal decay given in
Eq. (4.8). The structure function may also be related to
the two-dimensional radial distribution function [18]

S(Q)=1+27Tpf0wdr rg (NJdo(Qr) , 4.11)
where
_ 1 .
Jo(x) Y. fo d 0 exp(ix cosO) (4.12)

is the zeroth-order Bessel function of the first kind [19].
Since we are interested in high-Q measurements ap-

plied to semidilute systems, rapid oscillations of the

Bessel function in Eq. (4.11) cause the second term to
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vanish, leaving S(Q)=1. Similarly, because QL >>1, the
cross terms in Egs. (4.9) and (4.10) do not contribute to
their respective sums, leaving only the self terms. This
again results in S(Q)=1 from Eq. (4.10), while Eq. (4.9)
reduces to [17]

Fg(Q,t)=(exp{iQ-[R(0)—R(1)]}) ,

where Fg(Q,t) is the self part of the intermediate scatter-
ing function.

To relate Eq. (4.13) to the time-dependent diffusion
coefficient, we employ the Gaussian model for single par-
ticle motion [17]. The Gaussian model makes use of the
fact that the time scale associated with observation of the
particle displacements is large compared to 75. In this
case, [R(0)—R(#)] may be treated as a Gaussian random
variable which leads Eq. (4.13) to take the following form
for two dimensions:

(4.13)

Fg(Q,t)=exp ———4——([R(0)—R(t)]2)

=exp[— QW (1)]

=exp[ —Q*Dg(1)t], (4.14)

where W (t) is the two-dimensional mean square displace-
ment given by Eq. (4.4) and Dg(¢) is the effective diffusion
coefficient given by Eq. (4.5).

It is important to note that Eq. (4.14) represents a “first
cumulant” approximation to the intermediate scattering
function [10]. In general, the departure of Fg(Q,?) from
Gaussian behavior in Q will be reflected in the growing
importance of the higher-order cumulants. There is
theoretical evidence [20] that suggests the higher cumu-
lants in dilute three-dimensional hard sphere suspensions
are small. It is unclear whether the same result will hold
for two dimensions. Nevertheless, it is shown below that
Eq. (4.14) is an excellent approximation for the descrip-
tion of semidilute two-dimensional suspensions over a
time scale on the order of the decay of the memory func-
tion (75 <t <7p).

The detection system used in our EWDLS measure-
ments was operated in single photon counting mode.
Photon counting rates were maintained around 10° s,
which was low enough that dead time effects are unim-
portant while the counting statistics are reasonably good.
The scattered light detected by the optical fiber was near-
ly coherent so that f( A) always had a value of at least
0.8. The time correlator had 239 channels. The experi-
mental sampling time was 0.5 us and the measured delay
intervals ranged between 0.5 us and 100 s. Data sets
were accumulated in 300 s intervals. The number of pho-
ton counts in the first channel was typically 3 X 10°. Indi-
vidual data sets were normalized according to the mea-
sured average intensity [{|E(Q)|?) in Eq. (4.7)], cross
checked for consistency and then averaged together.

B. Digital video microscopy

Unlike EWDLS, the observable in a DVM experiment
is a complete set of two-dimensional N particle trajec-
tories,

N
C(R,5)=3 8[R—R;(1)] .

i=1

(4.15)

In DVM the minimum sampling time interval is deter-
mined by the time step between consecutive
configurations. The experimental procedure is to image a
representative area of the two-dimensional suspension
onto the detector face of a high resolution CCD video
camera. The analog video signal is subsequently convert-
ed into storable digitized information using a frame
grabber. The process of transforming the information
contained in a sequence of digitized images into the
time-dependent density profile described by Eq. (4.15) is
given by a prescription involving five logical steps. Here
we provide a rough outline of the procedure; a more de-
tailed description is given in an article by Crocker and
Grier [15].

(i) Image restoration: The raw data images usually
contain various defects that hinder immediate analysis.
These include long wavelength contrast gradients and
random pixel noise. The background artifacts are nomi-
nally due to uneven illumination or sensitivity of the cam-
era pixels, while pixel noise is associated with the instru-
ment response of the CCD camera and the frame
grabber. Since pixel noise is nearly random with a corre-
lation length A, equal to one pixel, it is greatly reduced
by convolving the raw data image with a Gaussian sur-
face of half-width A,. This operation suppresses the
noise without noticeably decreasing the contrast. The re-
sulting “noise reduced” image is further enhanced by
subtracting off the ‘“background” image. This “back-
ground” is constructed by performing a boxcar average
of the raw data with a step size equal to 2w + 1, where w
is the apparent sphere radius measured in pixels. The
end result is an estimate of an “ideal” image that can be
further processed.

(ii) Location of particle positions: The filtered images
are analyzed to determine the locations of local bright-
ness maxima. A pixel position is designated as a local
maximum if one other pixel within a distance w has a
larger value. Typically, the number of candidate local
maxima found is larger than the number of particles in
the frame. Since the maxima corresponding to the parti-
cle positions are the brightest of those found, only the
brightest 30% of the candidates are accepted.

(iii) Refining candidate positions: The local maximum
algorithm described by steps (i) and (ii) is sufficient to
resolve particle positions to within half a pixel. The spa-
tial resolution is improved by calculating the brightness
weighted centroid positions from the spatial integral of
circular areas with radius w centered at the original un-
corrected positions. This correction is smaller than 0.5
pixel and has the overall effect of improving the resolu-
tion to 0.1 pixel.

(iv) Candidate particle discrimination: In addition to
the integrated brightness within a circular area of radius
w centered about each candidate position (mg), the
second moment of the brightness distribution (m,) is also
calculated. It is found that particle and nonparticle can-
didates form two distinct well separated distributions in
the (my,m,) plane. The candidates corresponding to the
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true particle positions are selected based on this criterion.

(v) Linking sequential configurations into particle tra-
jectories: In this final step it is necessary to determine
which particle positions in a given image correspond to
subsequent positions in later images. For dilute suspen-
sions, the mean separation is much larger than single par-
ticle displacements, which are typically much smaller
than the dimension of a particle. Therefore all trajectory
displacements of interest are easily identified since they
fall within an empirically determined cutoff range.

In principle, it is possible to calculate F(Q,t) directly
from the trajectory data given by Eq. (4.15). This may be
accomplished in two ways. First, we consider the micro-
scopic definition

F(Q,0=( A4 _o(0)4q(1)) , (4.16)

where A4 (¢) is the Fourier transform of the spatial parti-
cle density [Eq. (4.15)] given by
172

J dR exp(—iQ-R)C(R,1) .

Aglt)= 4.17)

N

For nonzero Q the combination of Egs. (4.17), (4.15), and
(4.16) results in an expression for F(Q,¢) that is an expli-
cit function of R(#) given by the statistical average Eq.
(4.9). This expression may be evaluated numerically us-
ing standard computer simulation techniques [21]. The
effect of finite frame size is circumvented by employing a
periodic boundary condition. Alternatively, image pro-
cessing algorithms may be used to calculate F(Q,?) from
“idealized” images constructed from the particle trajec-
tories. These ideal images are numerically Fourier
transformed in two dimensions using standard fast
Fourier transform (FFT) algorithms. Equation (4.16) is
evaluated by calculating the time autocorrelation func-
tion of the Fourier space images for a particular time in-
terval, averaged over many particle configurations.

Using these two independent methods of evaluating
F(Q,t) from the microscopic data, it is possible to check
for self-consistency of the results for a single set of parti-
cle trajectories. Furthermore, it is possible to examine
the differences between the full intermediate scattering
function and the self part, F(Q,t). As discussed in Sec.
IV A, neglecting the cross terms (j¥i) in Eq. (4.9) leads
to an expression [Eq. (4.13)] for F¢(Q,t). For the micros-
copy data presented in this work, the particle concentra-
tions are small enough that the self and full intermediate
scattering functions are indistinguishable by the methods
described above. Therefore the previous assertion that
these measurements correspond to the microscopic re-
gime is experimentally verified.

V. RESULTS

In Fig. 3 we show a single restored image frame taken
from a DVM data set and its associated trajectories. The
pathways taken by individual particles appear to be un-
biased by the possible presence of net solvent flow in the
sample cell or transverse interactions with defects in the
walls. This assertion was tested by constructing histo-
grams of mean square displacements for all N particles as
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a function of time (see Fig. 4) and observing that the re-
sulting spatial probability distributions are well modeled
as Gaussian functions with a mean value equal to zero.
These distributions are the self part of the van Hove func-
tion, G4(R,t), which is the time-dependent conditional
probability that a particle will suffer a displacement R(¢)
from an initial position R(0) [17]. The time step between
consecutive frames is 33 ms, so that the time correlation
functions calculated from these trajectories are valid in
the range (74 <t <7p). For the shortest time step, 33
ms, there are slight deviations of G¢(R,?) from Gaussian
behavior. These deviations become less visible as the

time increment is increased.

The exact relationship between the van Hove function
and the intermediate scattering function is given by a
spatial Fourier transform.

Fs(@,0)= [ ” dR G5(R,0)exp(iQR) .

(5.1)

FIG. 3. Processed image of a quasi-two-dimensional colloidal
suspension. The processing details are described in Sec. IV B.
The two-dimensional packing density is approximately 1%.
Shown below are individual center of mass particle trajectories
for 30 consecutive image frames. The time interval between
frames is 33 ms.
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Figure 5 displays plots of Fg(Q,t) for four time incre-
ments constructed from the van Hove functions shown in
Fig. 4. The functions Fg(Q,?) were calculated from
Gs(R,t) by performing the two-dimensional Fourier
transform [Eq. (5.1)] numerically [18]. The data are com-
pared to the Gaussian model prediction {solid lines:
Fg(Q,t)=exp[ —Q2Dg(t)t]}] where the effective self-
diffusion coefficient has been replaced with the arbitrarily
chosen constant D =1.37X107° cm?s™!. It can be seen
that, aside from the small deviations for the shortest time
increment, the decays are well described as Gaussian
functions of Q. Hence the first cumulant approximation
[Eq. (3.14)] is a valid assumption for our system.

Figure 6 displays a direct comparison of
F(Q,t)/S(Q)=Fs(Q,t) determined from the EWDLS
data (small circles) and from the DVM data (big circles)
as a function of ¢ for four different wave numbers. The
Gaussian model prediction is also shown (solid lines).
The light scattering data were obtained by numerical in-
version of Eq. (4.6), while the microscopy data were cal-
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FIG. 4. Number histograms of self particle displacements in
a time interval ¢. The smooth solid lines are least squares fit
Gaussian functions with height H, offset from the origin o, and
standard deviation o. The displacements are given in units of

pixels (1 pixel=0.17 pm). (A) t=33 ms, H=714.2,
0=0.06295, and o0=0.6555; (B) t=99 ms, H =379.8,
0=0.07409, and o0=1.315; (C) =198 ms, H =258.8,
0=0.1096, and o0=1.938; (D) =297 ms, H =208.3,

0=01201, and 0 =2.373; (E) t =396 ms, H =176.0, 0 =0.1394,
and 0=2.765; (F) t=495 ms, H=154.1, 0=0.1638, and
o=3.087.
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FS( ’t)

0.0

FIG. 5. Self part of the intermediate scattering function plot-
ted against Q. The data points (circles) are calculated from the
van Hove functions obtained from the displacement histograms
shown in Fig. 4. The solid lines are model Gaussian functions,
exp[ —Q?Dt], with D=1.4X10"° cm?s~!. The top set of
curves correspond to ¢t =33 ms; subsequent sets correspond to
t =66, 264, and 1980 ms.

culated by the methods described in Sec. IV B. As men-
tioned previously, both the self and total parts of the in-
termediate scattering function were evaluated using the
microscopic particle trajectories. Because the two were
indistinguishable, only the self part of Fg(Q,t) is observed
in either measurement. During the manipulation of the
light scattering data, it was necessary to account for re-
sidual scattered light due to background excitation apart
from the evanescent wave but still associated with the in-
cident laser beam. Scattering centers at the suspension-
glass interface cause a small portion of the incident beam

1.0

0.5

F(Q,1)/S(Q)

0.0

t(ms)

FIG. 6. Normalized intermediate scattering function plotted
against time. DVM data (big circles) and EWDLS data are
compared to exponential decays defined in Fig. 5 (solid lines).
The top set of points correspond to Q =54551 cm™!. Subse-
quently faster sets of decays correspond to Q =91 128, 23076,
and 144026 cm ™.
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to refract, leading to an anisotropic distribution of back-
ground excitation energy. This background has its larg-
est effect at small angles. The effect was removed by di-
viding the scattering function by the average intensity
distribution. In addition, the raw light scattering data
corresponding to the smallest scattering angle
(Q=54551 cm™!) displayed temporal oscillations be-
tween 0 and 100 ms due to ringing in the detection
system’s electronics. For this reason, a polynomial fit to
the raw light scattering data, which retains the functional
form of the decay while neglecting the noise, is shown for
this wave vector. The polynomial was optimized to fit
the data best over the range of time scales for which there
is overlap with the microscopy data (10—500 ms).

We note that the agreement between the two measure-
ments in Fg(Q,?) is excellent; over the range of Q we have
investigated (Table II) the time dependences of the in-
dependently determined scattering functions are in quan-
titative agreement. The temporal deviations from ex-
ponential behavior can be seen from the plots shown in
Fig. 7. Here, the negative logarithms of the scattering
functions are given as linear functions of time. The solid
lines represent the Gaussian model prediction which can
be compared to both the light scattering (small circles)
and the microscopy data (big circles). As expected, the
deviations are small, but they are discernible. Further-
more, the deviations do not appear to depend on Q.

Figures 8(a)-8(d) display Dg(¢) against Int /¢ for the
four wave vectors given in Table I. The temporal range
displayed for each wave vector was chosen to correspond
to the full decay of the intermediate scattering function
(see Fig. 6). In the case of the largest scattering angles
[Figs. 8(c) and 8(d)] the data points three factors of e
smaller than the initial value of F¢(Q,t) (£ > 150 ms) have
been omitted. The agreement and linear form are strik-
ing for all of the wave vectors studied. Because no ad-
justments were made to the microscopy data, least
squares linear fits were made to these points alone (solid
lines).

At shorter time intervals (where there is no overlap be-
tween the DVM and EWDLS measurements) the light
scattering data deviate from the (In¢)/t behavior shown
in Fig. 8. Between 1 us and 5 ms, the effective diffusion
coefficient appears to increase to a maximum value which
occurs at approximately ¢ =5 ms. This behavior of the
effective diffusion coefficient could arise from the transi-
tion from three-dimensional to two-dimensional Smolu-
chowski dynamics, which must occur in our system in

TABLE II. Time constants for 1 um PMMA spheres in 10%
aqueous sucrose. 7, is the momentum relaxation time of fluid
displaced by a particle’s volume, 75 is the relaxation time of the
velocity autocorrelation function of a Brownian particle, 7y is
the hydrodynamic screening time beyond which hydrodynamic
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4

In[F(Q,1/S(Q)]

200

FIG. 7. Logarithmic plots of the intermediate scattering
function against time. DVM data (big circles) and EWDLS data
are compared to the Gaussian model defined in Fig. 5 (solid
lines). The bottom set of points correspond to Q =54 551 cm ™.
Subsequently higher sets correspond to Q =91 128, 123076, and
144026 cm ™.

some time range. Paul and Pusey have reported an ex-
perimental study of the time variation of the effective
diffusion coefficient of a Brownian particle in a three-
dimensional system [22]. For a Brownian particle with
about the same diameter as that in our experiments they
find that the effective diffusion coefficient approaches its
asymptotic value, dressed by the hydrodynamic effects of
the slowly decaying tail of the velocity autocorrelation
function, on the 5-10 us time scale. Further work is
necessary to determine the nature of the short time
behavior we have observed; this will be the subject of a
future study.

Table III lists values obtained from the linear fits
shown in Fig. 8. According to Eq. (3.5), the intercept is
equal to the long time diffusion constant DZ, while the
slope [(D§—DZ)7, ] is the difference between the long
and short time diffusion constants scaled by the constant
7r. The values obtained for D¢ and [(D§—DZ)r, ] ap-
pear to be independent of Q with the exception of the
slope for the Q =123076 cm™! data set, in which case
the slope appears to be smaller by a factor of 2. The Q
independence of Dg(t) is an anticipated result since the
Gaussian model has been shown to be a valid approxima-
tion for our system; hence higher-order cumulants do not
significantly contribute to Fg(Q,?), which is well de-

TABLE III. Slopes and y intercepts for Dg(t) vs Int /¢ (Fig. 8)
as a function of Q.

effects become important, and 7, is the structural relaxation Q (em™) (D§—Dg)r,, (cm?) Df (em?s™!) T ()

time. 54551 7.72X107° 1.15x10~° 6.6
. - . B 91128 7.44%107° 1.24x107° 6.9
s u a 2 123076 3.43x107° 1.23x107° 3.1

195 ns 50 ns 81.2 us 101 s 144026 6.81x10°° 1.22X10°° 6.2
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FIG. 8. The effective diffusion coefficient Dg(z) plotted against In(z/1 ms)/z. The range of time intervals covered is from 20 to 300
ms. DVM data are represented as big circles and EWDLS data are represented as small circles. The solid lines are linear least
squares fits to the microscopy data. (A) @ =54551 cm™'; (B) Q =91128 cm™}; (C) @ =123076 cm ™ '; (D) Q =144026 cm™'. The

slopes and intercepts are given in Table III.

scribed by Eq. (4.14). The spread in the observed values
of D¥ is small (standard deviation of 0.035) with an aver-
age equal to 1.21X107° cm?s™!. This value of D¥ is
reached according to the form given by Eq. (3.5) over the
time interval shown in Figs. 8(a)—8(d) (20 ms <t <300
ms). The short time diffusion coefficient D§ could nomi-
nally be assigned the same value as the bare diffusion con-
stant, namely, D,=0.707kyT/6mna =2.32X107°
cm?s™!, calculated from the Stokes-Einstein equation
with the necessary correction to account for the hydro-
dynamic friction due to the effect of the cell walls [23]. It
is evident from Figs. 8(a)—8(d) that at the shortest time
shown (z =20 ms) the diffusion coefficient has a value
similar to if not somewhat smaller than our estimated D,.
Using this value for D§, we calculated the time constants
7, listed in the last column of Table III. To determine
Ty it is necessary to take the asymptotic constant value
of the difference equation [4],

1

W (t)—DEt =(D§—DE)r In(t /1) (5.2)

In our current analysis, we found that the precision of
our data was not sufficient to calculate a reliable value for

7p- However, the determination of all four constants as
a function of particle concentration is the topic work in
progress.

For the two-dimensional Smoluchowski liquid,
7. ~a?/Dy=1s. Thus the magnitude of the measured
(Int)/t term in Eq. (3.5) is approximately seven times
larger than the theoretical prediction. Another incon-
sistency occurs between our data and the theoretical pre-
diction of Ackerson and Fleishman [16]. The measured
long time diffusion constant appears to overestimate the
predicted concentration dependence (Df/D§=[1—24]
=0.98) by a factor of 24. These disagreements are larger
in magnitude than the estimated statistical error in the
measurements.

It is possible that the disagreement between theory and
experiment is due to systematic errors. It is doubtful,
however, that such errors could occur in either or both
the DVM and EWDLS experiments and still lead to the
observed agreement between the two measurements.
Another possible source of error is the estimated value of
D,, which depends on the sucrose concentration of the
host solution; that concentration is estimated to be accu-
rate within 1%, and we presume the tabulated viscosity
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of sucrose solutions has the same accuracy. Our estimate
of D, also depends on the hydrodynamic correction due
to wall effects. The wall spacing was determined to be 3
pm by visualizing defects on the walls. This measure-
ment should have a precision of roughly the depth of
focus of the objective, 200 nm, so we expect the error in
the wall correction to the frictional force to be small. Al-
though there could be an unrecognized systematic error
in our measurements, we do not believe this to be the
case. It is important to note that an error in D, alone
cannot account for the discrepancies in both D£/D§ and
T, since a variation in D, can only lead to improvement
in one quantity at the expense of the other. The most
probable explanation is that the idealized theoretical
values obtained for the coefficients should not directly ap-
ply to our experimental system. This is not too surpris-
ing since the theoretical model is based on a strictly two-
dimensional system of colliding hard disks in the absence
of hydrodynamic interactions, which is certainly very
different from our quasi-two-dimensional colloidal sus-
pension.

VI. SUMMARY

We have presented experimental evidence for the time
dependence of the transition of the effective diffusion
coefficient in a quasi-two-dimensional suspension of hard
sphere Brownian particles from the “free particle” value
to the dressed particle value. For the intermediate time
range (7 <t <7p) the diffusion coefficient decays from
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its short time ““free particle” value to its dressed value as
(Int)/t in agreement with the theoretical prediction of
Cichocki and Felderhof [4]. The decay of the diffusion
coefficient is due to direct in-plane particle-particle col-
lisions and is not a consequence of hydrodynamic interac-
tions; the latter are important in determining the effective
diffusion coefficient at shorter times (75 <7 <7y) and are
included in the ‘“free particle” value. We have demon-
strated this behavior using both EWDLS and DVM mea-
surements, the former a probe of macroscopic particle
dynamics and the latter a probe of microscopic particle
dynamics. Our results indicate that the Gaussian ap-
proximation is an excellent representation of our system
and that the time dependence of the mean square dis-
placement may be obtained using Eq. (4.14). There is
disagreement between our observations of the magnitude
of the effect and the theoretical prediction. The observed
magnitude is between three and seven times larger than
that estimated. The discrepancy is most likely due to
significant qualitative distinctions between the theoretical
two-dimensional hard disk model and our experimental
system.
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FIG. 3. Processed image of a quasi-two-dimensional colloidal
suspension. The processing details are described in Sec. IV B.
The two-dimensional packing density is approximately 1%.
Shown below are individual center of mass particle trajectories

for 30 consecutive image frames. The time interval between
frames is 33 ms.



